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Abstract

In this paper, I study asymmetric moving average processes and provide theory for such

processes, their properties and conditions for convergence, stationarity, etc. I also propose

simple 2-step least squares procedure for estimating asymmetric impulse response functions

by local projections. Then, I generalize the estimation method to vector asymmetric

moving average processes and show that asymmetric impulse response functions may be

estimated using the proposed methodology. Finally, Monte Carlo analysis validates the

proposed method with satisfactory performance both in small and large samples.
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Introduction

Many popular estimation methods, e.g. Vector Autoregressions and Local Projections, as-

sume that the data generating process is symmetric and the effects of positive and negative

innovations are identical. However, in many cases, asymmetric effects of innovations may be

present. For example, monetary policy shocks are often considered to have different macroeco-

nomic effects. On the other hand, price and wage rigidities may lead to asymmetric effects of

positive and negative economic shocks. Finally, the irreversibity of investment decisions may

lead to asymmetric effects of positive and negative productivity shocks.

In all these cases, it is important to estimate the asymmetric effects of innovations on the

variable of interest. In this paper, I extend the concept of moving average processes to more

general asymmetric moving average processes and provide theory for such processes and their

properties. I also propose a simple 2-step estimation procedure based on local projections

regressions. Different, from other methods, the proposed method (1) is simple to implement (2)

allows for non-parametric estimation of impulse response functions, (3) allows for testing for

asymmetric effects by a simple Wald test. I study the performance of the proposed estimator

by Monte Carlo analysis and find that it has satisfactory performance both in small and large

samples.

Alternative estimation methods attempt to allow for non-linear or asymmetric effects but

have several limitations. Wecker (1981) and Br̊ann̊as and De Gooijer (1994) propose Maximum

Likelihood estimation for the asymmetric effects in moving average models. However, this

method is often challenging due to its high computational costs as it may require estimation of

large number of parameters. For instance, to estimate the asymmetric effects of a variable over a

horizon of 36 periods (common with monthly data), one would need to estimate 72 parameters.

On the other hand, Barnichon and Matthes (2018) propose a method of approximating im-

pulse responses by Gaussian function approximation. This procedure allows for asymmetric

effects but may require large number of basis functions for satisfactory approximation. More-

over the estimation requires use of Maximum Likelihood or Bayesian methods, which have

significantly higher computational costs.

Finally, Jordà (2005) proposes “flexible” local projections trying to allow for non-linear effects

for projecting the variable of interest onto polynomials (quadratic, cubic, etc.) of the dependent

variable. However, this method (1) doesn’t allow for asymmetric effects of innovations, (2) may

require higher order polynomials for satisfactory approximation of the true data generating

process.

Asymmetric time series processes have been studied in the literature, though not extensively.

Wecker (1981) proposes an asymmetric moving average (asMA) process, where the moving

average coefficients are different for positive and negative innovations. Later, Br̊ann̊as and
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De Gooijer (1994) extend the concept of asymmetric moving average processes to Autoregressive

Asymmetric Moving Average (ASasMA) processes with symmetric autoregressive terms and

asymmetric moving average terms. On the other hand, Brännäs and Gooijer (2004) introduced

the concept of asMA− asQGARCH models allowing to asymmetric effects on the conditional

volatility of the process. Furthermore, De Gooijer (2021) and Brännäs et al. (2012) extended the

concept of asymmetric moving average processes to multivariate case, proposing Asymmetric

Vector Moving Average (asVMA) processes, proposing Maximum Likelihood estimation for

such processes.

The rest of the paper is organized as follows. Sections 1 and 2 provide theory for univariate

and multivariate asymmetric moving average processes and their properties. Section 3 proposes

the estimation procedure for asymmetric moving average processes and provides a simple Wald

test for asymmetric effects. Section 4 extends the proposed estimation methodology to mul-

tivariate processes and asymmetric impulse response functions. Finally, Section 5 investigates

the performance of the proposed estimators by Monte Carlo analysis.

1 Asymmetric Moving Average Processes

I extend the concept of moving average processes to more general asymmetric moving average

processes, which I refer to as asMA(·) processes, in line with the language of Wecker (1981).

Definition 1.1 An Asymmetric Moving Average asMA(∞) process yt is given by

yt = c+ θ0(εt) + θ1(εt−1) + θ2(εt−2) + . . .

where εt is independent and identically distributed random variable with symmetric probability

density function f(·), such that

εt ∼ iid(0, σ2
ε) fε(εt) = fε(−εt)

and θi(·), i ≥ 0 are asymmetric linear functions, given by

θi(εt−i) = θ+i ε
+
t−i + θ−i ε

−
t−i for i ≥ 0

where ε+t and ε−t are positive and negative realizations of εt, θ+i , θ−i are the corresponding

coefficients and θ+0 = θ−0 = 1.

Remark Note that if yt is an asMA(∞) process such that θ+i = θ−i , ∀i then yt reduces to a

linear and symmetric MA(∞) process.
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Next, I characterize the properties of the asymmetric moving average processes. In particular,

I derive the mean, variance and autocovariance functions of the process yt in Theorem 1.1.

Theorem 1.1 Let yt be an infinite Asymmetric Moving Average asMA(∞) process of form

yt = c+ θ0(εt) + θ1(εt−1) + θ2(εt−2) + . . . εt ∼ iid(0, σ2
ε)

then

a) E[yt] = c+
1

2

(
∞∑
i=0

θ+i −
∞∑
i=0

θ−i

)
µ+
ε

b) Var[yt] =
1

2

(
∞∑
i=0

θ+i
2
+

∞∑
i=0

θ−i
2

)
σ2
ε −

1

4

∞∑
i=0

(
θ+i − θ−i

)2
µ+
ε
2

c) Cov[yt, yt−s] =
1

2

(
∞∑
i=0

θ+s+iθ
+
i +

∞∑
i=0

θ−s+iθ
−
i

)
σ2
ε −

1

4

∞∑
i=0

(
θ+s+i − θ−s+i

) (
θ+i − θ−i

)
µ+
ε
2

where µ+
ε ≡ E[εt | εt ≥ 0].

We can see from Theorem 1.1 that, different to symmetric moving average processes, the

mean of the process yt is not necessarily equal to the constant term c, but depends on the

asymmetry of the moving average coefficients. Also, the mean of the process yt is a function of

the conditional mean of the positive (as well as negative) innovations µ+
ε .

1

Similarly, the variance and autocovariance functions of the process yt are functions of the

asymmetry of the moving average coefficients and the conditional mean of the positive innova-

tions µ+
ε .

To better understand the properties of the asymmetric time series, suppose we have an

asMA(∞) process with following parameters

θ+i = ϕi
+ θ−i = ϕi

− εt ∼ N
(
0, σ2

ε

)
that is, the process is a mix of two AR(1) processes with parameters ϕ+ and ϕ− and Gaussian

innovations.

1For innovations εt with symmetric probability density function f(·), the conditional mean of the positive
innovations satisfies µ+

ε = −µ−
ε .
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Then, µ+
ε =

√
2/πσε and the mean, variance and autocovariance functions of yt are

E[yt] = c+

(
1

1− ϕ+

− 1

1− ϕ−

)
σε√
2π

Var[yt] =

(
1

1− ϕ2
+

+
1

1− ϕ2
−

)
σ2
ε

2
−
(

1

1− ϕ2
+

− 2

1− ϕ+ϕ−
+

1

1− ϕ2
−

)
σ2
ε

2π

Cov[yt, yt−s] =

(
ϕs
+

1− ϕ2
+

+
ϕs
−

1− ϕ2
−

)
σ2
ε

2
−
(

ϕs
+

1− ϕ2
+

−
ϕs
+

1− ϕ+ϕ−
−

ϕs
−

1− ϕ+ϕ−
+

ϕs
+

1− ϕ2
−

)
σ2
ε

2π

Fig. 1 plots the autocorrelation functions of an asMA(∞) process consisting of two AR(1)

processes with parameters ϕ+ and ϕ− for positive and negative innovations, respectively. In

the left panel, the process is given by ϕ+ = 0.8 and ϕ− = 0.4, while in the right panel, the

persistence of the positive and negative processes is significantly different, with ϕ+ = 0.9 and

ϕ− = 0.2.
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Figure 1: Autocorrelation functions of asMA(∞) process with different parameters

The figure shows that the ACF of the asMA(∞) process is a mix of the ACFs of the

two AR(1) processes, but not necessarily a linear combination of them. Instead, it is mainly

determined by the largest (in absolute value) of the two persistence parameters ϕ+ and ϕ−.

The similarity of the ACF of the asMA(∞) process to the ACF of the AR(1) process implies

that although the AR(1) process may be a good approximation for the asMA(∞) process, the

AR(1) process fails short in capturing the asymmetry of the process.

1.1 Representation

In this section, I provide a representation of the asymmetric moving average processes in

terms of its lags and a white noise process. This representation is useful for understanding the

properties of the asymmetric time series. It also becomes handy for estimation of the parameters

5



of the asymmetric moving average processes.

Theorem 1.2 Let yt be an infinite Asymmetric Moving Average asMA(∞) process of form

yt = c+ θ0(εt) + θ1(εt−1) + θ2(εt−2) + . . . εt ∼ iid(0, σ2
ε)

Then, yt can be expressed as

yt = b+ ϕ1yt−1 + ϕ2yt−2 + . . .+ ηt ηt ∼ WN(0, σ2
η)

where η = ε+ ξ, with ξ ∼ WN(0, σ2
ξ ), such that

E[ξt] = 0 E[ξtξt−i] = 0 E[ξtεt] = 0 E[ξtyt−j] = 0

for i ≥ 1 and j ≥ 1.

2 Asymmetric Vector Moving Average Processes

Definition 2.1 An Asymmetric Vector Moving Average asVMA(∞) process yt is given by

yt = c+Θ0(εt) +Θ1(εt−1) +Θ2(εt−2) + . . .

where εt = [ε1,t, . . . , εn,t]
′ is a vector of independent and identically distributed random variables

with symmetric probability density functions fεk(·), such that

εt ∼ iid(0,Σε) Σε = diag(σ2
1, . . . , σ

2
n) fεk(εk,t) = fεk(−εk,t)

and Θi(·), i ≥ 0 are asymmetric vector valued functions, given by

Θi(εt−i) = Θ+
i ε

+
t−i +Θ−

i ε
−
t−i for i ≥ 0

where ε+t and ε−t are elements-wise positive and negative realizations of εt, Θ
+
i , Θ

−
i are n× n

corresponding coefficient matrices and Θ0 ≡ Θ+
0 = Θ−

0 with normalization of its diagonal

elements to 1.

Remark Note that if yt is an asVMA(∞) process such that Θ+
i = Θ−

i , ∀i then yt reduces to

a linear and symmetric VMA(∞) process.

Next, in Theorem 2.1, I derive expressions for the mean, variance and autocovariance func-

tions of the process yt.
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Theorem 2.1 Let yt be an infinite Asymmetric Vector Moving Average asVMA(∞) process

of form

yt = c+Θ0(εt) +Θ1(εt−1) +Θ2(εt−2) + . . . εt ∼ iid(0,Σε)

then

a) E[yt] = c+
1

2

(
∞∑
i=0

Θ+
i −

∞∑
i=0

Θ−
i

)
µ+

ε

b) Var[yt] =
1

2

∞∑
i=0

(
Θ+

i ΣεΘ
+′

i +Θ−
i ΣεΘ

−′

i

)
− 1

4

∞∑
i=0

(
Θ+

i −Θ−
i

)
µ+

ε µ
+′

ε

(
Θ+′

i −Θ−′

i

)
c) Cov[yt,yt−s] =

1

2

∞∑
i=0

(
Θ+

s+iΣεΘ
+′

i +Θ−
s+iΣεΘ

−′

i

)
− 1

4

∞∑
i=0

(
Θ+

s+i −Θ−
s+i

)
µ+

ε µ
+′

ε

(
Θ+′

i −Θ−′

i

)
where µ+

ε ≡ E[εt | εt ≥ 0].

2.1 Representation

Theorem 2.2 Let yt be an infinite Asymmetric Vector Moving Average asVMA(∞) process

of form

yt = c+Θ0(εt) +Θ1(εt−1) +Θ2(εt−2) + . . . εt ∼ iid(0,Σε)

Then, yt can be expressed as

yt = b+Φ1yt−1 +Φ2yt−2 + . . .+ ηt ηt ∼ WN(0,Ση)

where η = ε+ ξ, with ξ ∼ WN(0,Σξ), such that

E[ξt] = 0 E[ξtξ
′
t−i] = 0 E[ξtε

′
t] = 0 E[ξty

′
t−j] = 0

for i ≥ 1 and j ≥ 1.

3 Estimation of asMA Processes

In Section 1, I showed that any asMA process has a Wold representation with innovations ηt

that consist of the structural shocks εt and ξt, which is a function of past structural shocks. Next,

I derive a representation of asMA(∞) processes that can be used to estimate the parameters

of the process.
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Theorem 3.1 Let yt be an infinite Asymmetric Moving Average asMA(∞) process of form

yt = c+ θ0(εt) + θ1(εt−1) + θ2(εt−2) + . . . εt ∼ iid(0, σ2
ε)

Then, yt+h can be expressed as

yt+h = β0h + β1hyt−1 + β2hyt−2 + . . .+ θ+h ε
+
t + θ−h ε

−
t + vt+h

with

E[vt+h] = 0 E[ε+t vt+h] = 0 E[ε−t vt+h] = 0 E[yt−jvt+h] = 0

for all h ≥ 1 and j ≥ 1.

Therefore, the equation above can be estimated by the Least Squares method if there were

proxies for the error terms ε+t and ε−t .

Theorem 3.1 shows that the h-period ahead forecast of an asMA(∞) process can be written

as a function of its current and past values, the structural shocks εt and, and the forecast errors

vt+h. Hence, the coefficients of an asMA(∞) process can be estimated by the Least Squares

method if there were proxies for ε+t and ε−t .

As proxies for the structural shocks εt, I propose using the residuals of the Wold representation

of an asMA(∞) process η̂t.

Hence, consider 2-step estimation scheme, as

yt = x′
tβ1 + ηt

yt+h = x′
tβ2h + θ+h η̂

+
t + θ−h η̂

−
t + vt+h

where xt = [1, yt−1, . . . , yt−p]
′.

Therefore, the residual of the first-stage regression η̂t is a proxy of εt that also includes ξt as

random noise.

The estimation problem poses three challenges. First, the Wold representation of an asMA(∞)

process may be infinite and many lags of the dependent variable may be needed to approximate

the Wold representation.

Second, the residuals of the first-stage regression η̂t are imperfect proxies for the structural

shocks εt, since they also include ξt as random noise.

Third, the second stage regression includes the positive and negative residuals as different

regressors. Correct inference requires that the signs of the residuals coincide with the signs of

the structural shocks.

In the following sections, I test the performance of the proposed method in Monte Carlo
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analysis and find that it performs well in both finite and infinite samples and that the above-

mentioned challenges have little effect on the estimation in practice.

3.1 A simple Wald test for asymmetric effects

Consider the second step of the estimation with

yt+h = x′
tβ2h + θ+h η̂

+
t + θ−h η̂

−
t + vt+h

The equation above allows for a simple procedure to test for asymmetric effects. If there are

no asymmetric effects, then we would have θ+h = θ−h = θh and the corresponding estimators will

satisfy θ̂+h
p→ θh and θ̂−h

p→ θh. However, if there are asymmetric effects, then θ̂+h
p→ θ+h and

θ̂−h
p→ θ−h .

Therefore, the presence of asymmetric effects can be tested with a Wald test with the hy-

pothesis H0 : θ
+
h = θ−h and test statistic θ̂+h − θ̂−h . The test can be carried out both for particular

horizon h from the corresponding regression equation, or for all horizons with the hypothesis

H0 : θ
+
h = θ−h ,∀h by jointly estimating regressions for all horizons h.

4 Estimation of asVMA Processes

In Section 2, I showed that, similar to univariate processes, any asVMA process has a Wold

representation with innovations ηt that consist of the structural shocks εt and ξt. Below, I derive

a representation of asVMA(∞) processes that can be used to estimate the impulse response

functions of the process.

Theorem 4.1 Let yt be an infinite Asymmetric Moving Average asVMA(∞) process of form

yt = c+Θ0(εt) +Θ1(εt−1) +Θ2(εt−2) + . . . εt ∼ iid(0,Σε)

Then, yt+h can be expressed as

yt+h = b0h +B1hyt−1 +B2hyt−2 + . . .+Θ+
h ε

+
t +Θ−

h ε
−
t + vt+h

with

E[vt+h] = 0 E[ε+t v
′
t+h] = 0 E[ε−t v

′
t+h] = 0 E[yt−jv

′
t+h] = 0

for all h ≥ 1 and j ≥ 1.

The dynamic effects of innovations can be estimated by the local projections regressions
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provided that we have proxies for the structural errors ε+t and ε−t .

The proxies for the structural shocks εt, may be obtained from the residuals of the Wold

representation of an asVMA(∞) process η̂t by common identification strategies in the literature,

such as recursive ordering, sign restrictions, external instruments

Then using the estimates of the structural shocks, the impulse response functions of the

asVMA(∞) process can be estimated by the following 2-step methodology

yt = b+Φ1yt−1 +Φ2yt−2 + . . .+ ηt

yt+h = b0h +B1hyt−1 +B2hyt−2 + . . .+Θ+
h ê

+
t +Θ−

h ê
−
t + vt+h

where ê+
t and ê−

t are the estimates of the structural shocks ε+t and ε−t obtained from η̂t.

5 Monte Carlo analysis

5.1 Estimation of asMA processes

The previous sections developed theoretical background for asymmetric moving average pro-

cesses and provided a simple method for estimating parameters of such processes via simple

least squares regressions.

In this section I demonstrate the proposed methods in Monte Carlo analysis by first generat-

ing asMA processes with known parameters and estimating them with the proposed methods.

First, I generate asMA processes with following features. The parameters corresponding to

positive innovations are given by the MA representation of an AR(2) process with parameters

ϕ+
1 = 1.4 and ϕ+

2 = −0.45. On the other hand, the parameters corresponding to negative

innovations are given by the MA representation of a AR(1) process with parameters ϕ−
1 =

0.6. Consistent with the assumption of symmetric innovations, I draw innovations from a

standard normal distribution. For the simulations, I consider sample sizes of 100, 200, 500,

1000 observations and generate 1000 series of asMA processes for each sample size.
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1 = 0.6.

Figure 2: The IRFs of positive and negative shocks of the generated series

Next, I estimate the impulse response functions of positive and negative shocks with the

proposed 2-step local projections methodology.

I plot the estimated IRFs along with the actual IRFs in Fig. 3.
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Dashed lines represent 2.5-th, 50-th and 97.5-th percentiles of estimated IRFs

Figure 3: Estimated versus actual IRFs
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5.2 Estimation of asVMA processes

Next, I extend the analysis to multivariate asMA processes. I generate a bivariate asMA

process with the following features. The parameters corresponding to positive and negative in-

novations are given by the VMA representations of different V AR(1) process with the following

parameters

Φ+ =

[
1.05 −0.1

0.2 0.8

]
Φ− =

[
0.6 0.2

0.1 0.8

]
A−1

0 =

[
1 0

0.5 1

]

The matrix A−1
0 is lower triangular and implies contemporaneous exogeneity of the first

variable.

Then, I draw 1000 samples of the bivariate asVMA process with sample size of 500 and

estimate the impulse response functions of positive and negative shocks with the proposed

2-step local projections methodology. The identification of the structural shocks is done by

recursive ordering in line with the assumptions of the data generating process.

I plot the estimated IRFs along with the actual IRFs in Fig. 4.
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Figure 4: Estimated versus actual IRFs

Note: Number of samples = 1000.

Dashed lines represent 2.5-th, 50-th and 97.5-th percentiles of estimated IRFs

12



The results show that the proposed methodology has satisfactory performance in estimating

the impulse response functions of positive and negative shocks in both univariate and multi-

variate asMA processes.

Conclusions

This paper develops a methodology for estimating asymmetric moving average processes in

both univariate and multivariate settings. The proposed methodology is based on the Wold

representation of the process and the use of proxies for the structural shocks. The methodology

is simple, computationally efficient, and can be implemented with standard statistical software.

The Monte Carlo analysis shows that the proposed methodology performs well in both finite

and infinite samples.
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